因子投资中的行为金融学——从阵地战到心理战

因子投资中的行为金融学——从阵地战到心理战

传统金融学假设市场参与者都绝对理性——显然与事实不符——因此无法解释现实中出现的种种错误定价。行为金融学认为投资者是有限理性的,将传统金融理论与心理学结合,探究是什么非理性行为导致错误定价,以及这些行为偏差与资产收益率的内在联系。因子投资将人的行为偏差作为超额收益率来源,因此有必要全面梳理行为金融学现有成果,与其对应的市场异象。

阅读更多
Alpha策略中的风险模型——沉默的基石

Alpha策略中的风险模型——沉默的基石

Alpha策略中的风险模型功能是,预测底层资产预期收益的协方差矩阵,从而在给定预期收益率下最小化组合方差,提升策略夏普比。风险模型的重要程度不亚于收益率模型,但与收益率模型相比,关于搭建风险模型的介绍和讨论却门可罗雀,一方面是由于大多数投资人选择使用商用方案(Barra),另一方面风险模型需要从策略全局考虑问题,不能通过简单的benchmark评估其贡献。本文系统性地介绍了风险模型的定义和实现方案,包括压缩估计、专家因子模型以及数据驱动的统计模型。

阅读更多
Quant4.0(四)系统整合与简化版量化多因子系统设计
2023第一阶段量化工作总结与展望

基于逐笔成交数据的股市资金流因子——雄关漫道真如铁

不同于成交量因子考察股票某一时间段内的交易量整体,本篇资金流因子基于逐笔成交数据计算,研究交易形成的微观结构特征(如交易对手是大单还是小单,挂单金额分布等)。逐笔成交数据量较大,计算因子颇具工程挑战,本文首先介绍基于单机的计算框架,然后简单总结资金流因子研究成果。

阅读更多
Quant4.0(三)可解释AI、知识驱动AI与量化投研

Quant4.0(三)可解释AI、知识驱动AI与量化投研

XAI(可解释性人工智能)是几十年来的重要研究方向,对于人工智能模型的可信度和鲁棒性至关重要。在量化领域,提高人工智能的可解释性可以使决策过程更加透明和易于分析,为研究人员和投资者提供有用的见解,并发现潜在的风险敞口。在本文中,我们将讨论如何在Quant 4.0中利用XAI:第一部分介绍常见的XAI技术,第二部分将这些技术与实际的量化场景联系起来。知识驱动的人工智能是数据驱动的人工智能的重要补充技术,特别是在低频投资场景(如价值投资和全球宏观投资)中。在本文的最后,我们介绍如何将知识驱动人工智能应用于量化研究。

阅读更多
Quant4.0(二)自动化AI与量化投研

Quant4.0(一)量化投资简介,从1.0到4.0

近年来,量化投资产业在国内蓬勃发展,成为讨论二级市场时绕不开的话题,或被神话,或人人喊打。那么,究竟什么是量化投资(Quantitative Investment)?有哪些量化策略,量化策略一定赚钱吗?构建量化策略有哪些基本原则?本文介绍了量化投资的基本概念、前世今生,并展望其未来发展模式。

阅读更多

为什么实盘不如回测?如何检验多重测试导致的回测过拟合

回测(Backtesting)是量化策略研发中的核心环节,也是量化投资和传统主动投资的关键区别。回测指将一个可被准确刻画的投资策略,在历史模拟环境中进行模拟交易,并利用该策略在历史上的表现推断其在未来的表现,从而对多组策略进行取舍,以形成最终的投资决策。本文在关于回测过拟合的简单介绍基础上,进一步讨论交易策略历史表现的量化评估指标,重点考虑回测过程中多重测试导致的假阳性。量化交易使用计算机程序实现自动化交易,其与传统主动投资的关键区别在于依赖”回测”验证所提出策略的有效性并对其预期性能作出估计。在计算机算力增长与算法发展的背景下,研究人员实施的回测次数增多,多重测试导致假阳性频繁出现,回测期内貌似显著的最佳策略缺乏在样本外数据上的泛化能力。这一现象被称为回测过拟合,如何估计发生回测过拟合的概率,并调整夏普比率等预期业绩指标,以正确反映多重测试的影响下策略的真实性能成为一个新兴的研究方向。

阅读更多
成交量因子——换手率与非流动性

成交量因子——换手率与非流动性

成交量是量价因子中不可或缺的部分,但大多数情况下是以量价配合中的配角出现,如量价关系因子动量反转因子所讨论的那样。本文聚焦于成交量本身,讨论了两种重要选股因子:换手率因子与非流动性溢价,成交量因子在全球市场,尤其是A股这样的非成熟市场中,与股票截面收益有显著的预测效力。

阅读更多